Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions.

نویسندگان

  • Johnnie L Underwood
  • Collin G Murphy
  • Janet Chen
  • Linda Franse-Carman
  • Irmgard Wood
  • David L Epstein
  • Jorge A Alvarado
چکیده

The regulation of transendothelial fluid flow by glucocorticoids was studied in vitro with use of human endothelial cells cultured from Schlemm's canal (SCE) and the trabecular meshwork (TM) in conjunction with computer-linked flowmeters. After 2-7 wk of 500 nM dexamethasone (Dex) treatment, the following physiological, morphometric, and biochemical alterations were observed: a 3- to 5-fold increase in fluid flow resistance, a 2-fold increase in the representation of tight junctions, a 10- to 30-fold reduction in the mean area occupied by interendothelial "gaps" or preferential flow channels, and a 3- to 5-fold increase in the expression of the junction-associated protein ZO-1. The more resistive SCE cells expressed two isoforms of ZO-1; TM cells expressed only one. To investigate the role of ZO-1 in the aforementioned Dex effects, its expression was inhibited using antisense phosphorothioate oligonucleotides, and the response was compared with that observed with the use of sense and nonsense phosphorothioate oligonucleotides. Inhibition of ZO-1 expression abolished the Dex-induced increase in resistance and the accompanying alterations in cell junctions and gaps. These results support the hypothesis that intercellular junctions are necessary for the development and maintenance of transendothelial flow resistance in cultured SCE and TM cells and are likely involved in the mechanism of increased resistance associated with glucocorticoid exposure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap Junction Protein Connexin43 Exacerbates Lung Vascular Permeability

Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their compone...

متن کامل

1 Role of N - WASP in Endothelial Monolayer Formation and Integrity

Endothelial cells (ECs) form a monolayer that serves as a barrier between the blood and underlying tissue. ECs tightly regulate their cell-cell junctions, controlling the passage of soluble materials and immune cells across the monolayer barrier. We studied the role of N-WASP, a key regulator of Arp2/3 complex and actin assembly, in EC monolayers. We report that N-WASP regulates endothelial mon...

متن کامل

Rho and Rac but not Cdc42 regulate endothelial cell permeability.

Endothelial permeability induced by thrombin and histamine is accompanied by actin stress fibre assembly and intercellular gap formation. Here, we investigate the roles of the Rho family GTPases Rho1, Rac1 and Cdc42 in regulating endothelial barrier function, and correlate this with their effects on F-actin organization and intercellular junctions. RhoA, Rac1 and Cdc42 proteins were expressed e...

متن کامل

Fluid shear, intercellular stress, and endothelial cell alignment.

Endothelial cell alignment along the direction of laminar fluid flow is widely understood to be a defining morphological feature of vascular homeostasis. While the role of associated signaling and structural events have been well studied, associated intercellular stresses under laminar fluid shear have remained ill-defined and the role of these stresses in the alignment process has remained obs...

متن کامل

Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells.

OBJECTIVE To assess the role claudin-5, an endothelial cell (EC) tight junction protein, plays in establishing basal permeability levels in humans by comparing claudin-5 expression levels in situ and analyzing junctional organization and function in 2 widely used models of cultured ECs, namely human dermal microvascular (HDM)ECs and human umbilical vein (HUV)ECs. METHODS AND RESULTS By immuno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 277 2  شماره 

صفحات  -

تاریخ انتشار 1999